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Dedication

This lecture is dedicated to the memory of

Tobias Houghton

PhD student (2024-2025)

who started his PhD on this research with curiosity, generosity, and promise.




Research contributions and collaborations

Key contributors (featured in this lecture):

Rishika Ananthula (PhD student) Mark Wang (PhD student) Dr. Matthew Preisser (Post-doc)

With contributions from:

The SETx-UIFL research team, including faculty, students, and collaborators from partner institutions, local governments, industry, and
community organizations.




Coastal communities face a growing convergence of
acute and chronic stressors

Chronic: persistent, over many decades or centuries
(e.g., extreme heat, air pollution, sea-level rise,
subsidence, socio-economic-vulnerability)

Acute: during a flood event or few seasons (e.g., storms,
air pollution incidents)
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Inland urban
flooding

Green et al., Natural Hazards and Earth System Sciences, 2025
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= Which processes and variables need to be captured in regional scale
hydrological and atmospheric models so that they are representative of the

conditions experienced by local communities and help inform adaptation
strategies?

How can we understand the linkages between and within natural, built, and

social systems in urbanized regions to better support natural and human
resilience?
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Beaumont-Port Arthur

Southeast Texas: acute on chronic
hazards impacting communities

» Frequent acute (e.g. compound flooding) on chronic (e.g. toxic air
pollution) hazards, expected to worsen with climate change, aging
infrastructure, etc.

= Continuous urban expansion and increased impervious cover over
past several decades

= Home to one of the largest petrochemical industrial complexes
= Ranks in the top 10% of most polluted US communities
Total Daily Precipitation from ERAS in SE Texas (1950-2014) .. . .
= Represents urban conditions along the Gulf Coast — experiencing

Tropical Slur“lu"““n‘.

wison 1" population and industrial transitions but with less resources
available than larger cities

= A quarter of families and 40% of children in poverty

= SETx-UIFL builds on existing work, including major expansion of
the flood sensing and air sensing networks

©tal Daily Precipitation {mm)

.5%0”:*'8882988

15mm

10mm
S5mm
1mm

o Q 0 0 ¢
G L. L. Ll
Time

Motivation



Providing better data, modeling, & planning to support
climate adaptation in SETx and the Gulf Region

Goal: Co-develop data and decision-making
frameworks with stakeholders to aid community-led
development of adaptation strategies

Approach to engagement: engage in two-way relationships
THEME 3 between decision makers/residents and researchers to ensure

stakeholder knowledge is incorporated into modeling and

scenarios development and that data from SETx-UIFL research

are useful for and incorporated into community-led climate
sy adaptation decision-making

between floods &
air polution
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= SETx-FCS (Flood Coordination Study): led by Liv Haselbach (Lamar
University Pl) includes SETx counties, cities, river authorities, drainage
IVITY AREA districts, industries, federal agencies

Laboratory  Laboratory-  Community = Resident groups working with Texas Target Communities and community-
Network Stakeholder Accessibility . . .
iteractions Z level stakeholders and community leaders experienced in the challenges
Engagement faced by local populations
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Interactions: Precipitation-discharge
patterns, heat-flooding events, and
future projections

Impacts: Compound flood inundation
mapping and downscaling of hydrological
predictions

oy

|Ad ptation: Co-design of adaptation
:st rate e : actmtles prOJects and




Interactions: Precipitation-discharge
patterns, heat-flooding events, and
future projections

Impacts: Compound flood inundation
mapping and downscaling of hydrological
predictions
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Temporal Clustering of Extreme Precipitation Events and Hydrologic
Response Iin Southeast Texas

Clustering beyond seasonality: Do extreme
precipitation events exhibit significant sub-seasonal
temporal clustering beyond what would be expected
from seasonal variability alone?

Historical extreme precipitation events over SETx from ERA5-Land
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ERA5-Land: global, hourly, ~9 km land-surface reanalysis from 1950 to present, derived from ERA5 atmospheric forcing. Produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF) under the Copernicus Climate Change Service (C3S).

Ananthula, Passalacqua, Persad, in preparation.
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To quantify clustering, we adapt Ripley’s K to a temporal application

Ripley’s K quantifies whether points in a dataset are clustered, dispersed, or random by comparing the observed
spatial distribution to a theoretical random distribution.

Random null (all peaks) Random null (storm events) Seasonally structured null (storm events)
— QObserved Ripley's K (Normalized, no declustering) 3,54 — Observed Ripley's K (Normalized) - Observed Ripley's K (Normalized)
41 === Random-null median === Random-null median 357 --- Seasonal-null median
Random-null 95% band Randome-null 95% band g Seasonal-null 95% band >
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n n 1. Identify extreme precipitation events and de-cluster to ensure event independence.
T 2. Apply temporal Ripley’s K analysis using two null models with Monte Carlo simulations:
K(h) = n(n—1) le I'ti-tj<h Random Poisson (homogenous) null model
=171

Seasonally structured (non-homogenous) null model
Ananthula, Passalacqua, Persad, in preparation 3. Identify significant temporal clustering
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More pronounced clustering occurs in the mid-term lag range

Short term (1-25 days) Mid term (26-60 days) Long term (61-90 days)
" . - Lo

All clustering
Using random null model

Number of significant lags

Filtering out patterns
driven by seasonality

Using nhon-homogenous
(seasonally structured)
null model

Number of significant lags
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Hydrologic consequences: To what extent is CI UStEI‘Ed pI‘ECi pitation epiSOdeS inCI‘ease

sub-seasonal temporal clustering of extreme

precipitation associated with increased likelihood the IikelihOOd Of high diSCha I‘ge events

of high-discharge events?

Prob. of extreme discharge following precipitation episodes Clustered precipitation increases the odds of 99th-

percentile discharge exceedance by nearly six-fold
0.304|~* Clustered event
Clustered, 95% range '_g -
- Non-clustered event < Q99 Q99
0.25 Non clustered, 95% range o - -
f; . MH Q99 Q98
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0.10 E ‘ + 4 ® MH-OR (Mantel-Haenszel)
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0.05{ = - . .
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Odds Ratio
0.00 1

-0 -8 -6 -4 -2 0 2 4 6 8 10
Lag (days relative to event)
= Identify non-overlapping clustered episodes (moving window)
» Select seasonally matched control windows
= Compute extreme-discharge probability (clustered vs non-clustered)
= Evaluate Odds Ratio (OR) for clustered episodes
= Compute Mantel Haenszel Odds Ratio (MH-OR) stratified over cumulative precipitation (MH-OR tests whether there is an
association between exposure and outcome after controlling for stratification)
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Detecting multi-hazard events: number of days an area experiences
a heat hazard within 30 days of an extreme precipitation event

Compounded heat and rain: How many heat
and precipitation events happen within the
same 30 days window?

= Used daily precipitation (IMERG-GPM) 5

satellite data

= Identified precipitation events with
single day average recurrence interval
of 2 years

= Merged events within 200 km and 3
days from each other

Preisser and Passalacqua, AGU Advances, 2025
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Example of proxy flood hazard boundary delineation for 25 May 2015

(A) daily precipitation depth (mm)

(B) count of half hourly observations with more than 0.01 mm of precipitation

(C)average recurrence interval for rainfall (comparing with NOAA precipitation frequency estimates)




Heat hazards: combinations of 95th percentile heatwave
and 30C wet bulb globe temperature

= Used daily temperature (AIRS + MODIS) satellite data
= Heat wave: minimum of 3 consecutive days where both min and max temperature are above 95" percentile

= Wet bulb globe temperature accounts for additional meteorological variables (solar radiation, humidity, wind speed) —
computed from air temperature and relative humidity

= Aggregated heat events based on 200 km and 3 days as for precipitation

Aug. 9th, 2011 June 27th, 2012 July 7th, 2020

-105 -100 -95 -105 -100 -95 -105 -100 ~95
Heatwave M Heat Event | Overlap Hazards = Calc. Boundary
Preisser and Passalacqua, AGU Advances, 2025
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Remote sensing improves multi-hazard flooding and extreme heat
detection by fivefold over current estimates

Socioeconomic Housing Characteristics
Existing databases This study A p b
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= Computed multi-hazard experiences: number of heat hazard days that
occur within a given time-lag of each flood event. o e 2 e L e

= Inequities detected regardless of method and vulnerability metric
= Data resolution limits detection of inequities

Preisser and Passalacqua, AGU Advances, 2025

Indicator Percentile
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How does the future look like?

Future climate scenarios: Which GCMs work | = Identified global climate models that best capture climate conditions over SETx

best in southeast Texas and can we obtain high |« Developed algorithm to create ultra-high resolution climate projections for SETx

resolution projections? = Piloted new techniques for capturing and projecting rainfall events that drive
flood risk over SETx

) Input Data KrigR Process Model
Model Selection Process for NEX-GDDP-CMIP6 Models -~ -~ T

KrigR: Training

(Predictors ~Predictands at native predictor resolution)

!
I

KrigR Equation: Prediction ‘

O  Big Picture Selection

Muodels are evaluated for their fit to ERAS
datasets, and the worst-fit models are
discarded.

created

LSS Regional Climate Pattern i i
Models are assessed for their ability to
reproduce regional climate pattems, filtering
out those that do not.

Varlograms/Autocorrelation Applied

{Output st 3em)

SETx Climate and Flooding
Control

Models are further refined based on their
performance in extreme climate and ‘- - - - - |
flooding indices specific 1o the SETx region.

' ‘ Initial Output |

\c
-

o RepentProcess oFinel__

Final Output

. . output at Tkm
Nduka, Persad, et al., in preparation ?
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We produced daily projections 1950-2100 for 5 SSPs from 10 GCMs

Dai Iy _ Average number of days/year
* avg., max., min. temperature with heat index above 90°F
» avg. rainfall rate Historical | B of Century (8050°-2700)
« avg. relative humidi (19004014 . S
g. u ty Scenario Scenario
o ifi idi | Port Arthur 8 115 159
avg. sp_ecmc humidity e = T 53
* avg. wind speed Houston 13 103 162
« avg. surface solar radiation City by city | | Galveston 2 122 12
- Total precipitation heat stress < [kountze 9 97 155
projections Ws‘u'ls_lmg g g; }22
. . mberton
Historical 2040-2060 2080-2100 Bridge City 8 111 158
= * | |Port Neches 8 111 158
—
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” & 32,2
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Days/year with 160 w0 o COE sow
heat index >32.2°C Nduka, Persad, et al., in preparation
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Interactions: Precipitation-discharge
patterns, heat-flooding events, and
future projections

Impacts: Compound flood inundation
mapping and downscaling of hydrological
predictions

dhptatmm Co d,eg.lgn of aclaptatlon




We built a synthetic database of storms using storm transposition

/" Transposition domain /" Storm Transposition liquid saturation ()
Transposed Original — b
storm %t3 %tS storm | D850
L, / Qotg 0.6600
Domain of ( Q ty 04750
gl analysis ' . ! (000
_ l\__ » /' M. 01574
l ponded depth (M)
S B ~ | /o . N oo
/Selection of extreme storms) |/ Rainfall Intensity
315N Frequency Curve
‘ [ - o 350
\\.. = Mean Storm Bxal precipttation {mm| 5 _/" '\-\- XD = ..-‘//"

ATS: fully coupled, watershed-scale surface-subsurface

hydrologic model for pluvial-fluvial flooding
Expensive to run: mesh elements O(100 m)

Storm transposition: identify the most severe storms within
a homogeneous region and transpose them to the analysis

watershed

Perez, Coon, Rathore, Le, Journal of Hydrology, 2024 Coon and Shuai, 2022
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The hydrological model was run for
all 5000 storm events

6000

5000

4000

20

Discharge [m*/s)
8
(-]
a

2000 30

1000

+ 40

ATS results are too coarse ?
to inform local planning £ 2000
| ° ;mpnn:al:rnbamllryDn:tvuum:n

Return Pernied [yr]

Flood frequency curve derived from 5000 storm events in Village Creek




We apply volume conservation to distribute water
from ATS on high-resolution terrain

Downscaling: How do we downscale
modeling predictions to scales relevant

to stakeholders?

(1) Overlay downscaling
geometry on coarse mesh

-2

0

(2) Sum volume in geometry

ATS Ponded Vol [m?)]

Wang, Passalacqua, et al., in preparation

N w N o o
ATS Ponded Vol in Geometry [10° m?]

T
=

(3) Distribute the volume on
high-resolution terrain

Downscaled Inundation Depth [m]

Original DEM Cell Detrended DEM

Inundation Map (Original DEM)

We use a detrended DEM to avoid discontinuities at the
boundaries between elements




We obtain an inundation map at 1 m resolution

A\ S

== Building

Ponded depth [m] ‘
0-0 (N
0 - 0.001 J \ Building
0.001 - 0.003 \ 57 - A Inun [m]
0.003 - 0.004 ‘ 7 3 \
» 0.004 - 0.007
= (.007 - 0.012
== (.012 - 0.038
= (.038 - 0.319
= (),319 - 3.967

Wang, Passalacqua, et al., in preparation




The operation can be repeated
with the ensemble of storms to obtain probabilistic maps

= Building
ARI [yr]:
Inun>0.1m
1-2

2-5

5-10

w10 - 25

m 25 - 50

= 50 - 100 N : %

= 100 - 250 v YR ! 375 750 m
m 250 - 500 n -

AEP;iza = 4 : Annual exceedance probability of inundation > 0.1 m [%] (j: rank; n: # simulations)
T

ARl iz = Annual recurrence interval of inundation > 0.1 m [years]

Wang, Passalacqua, et al., in preparation AEP, pirel

Impacts



pygeoflood: A simple near real time approach for

Flood inundation mapping: Is a mapping fluvial, pluvial, and coastal flooding
high-fidelity model always needed?
= GeoFlood (Zheng et al., 2018) computes the = Pluvial inundation is estimated with FillSpillMerge
fluvial component based on HAND on lidar routing flows through depressions

with retraced centerlines via GeoNet

1
Y =
a-A+6 -k

b
g(a,b) =arg (rglelgL LP(s)ds)

Flood

. Address Point

HAND

A 4

Normal

Passalacqua et al., JGR-ES, 2010; Zheng et al., WRR, 2018 Barnes et al., eSurf, 2019; Preisser, Passalacqua, et al., HESS, 2022




pygeoflood: A simple near real time approach for mapping fluvial,
pluvial, and coastal flooding

= (Coastal inundation is computed with a HAND-
like approach that accounts for connectivity of
water bodies

A .
AA AN AA.
- A ar Coastline

Plan View

v

h;

ho
Cross Section A-A'

$ pip install pygeoflood

Wang, Passalacqua et al., Frontiers in Water, 2024; Wang, Preisser, and Passalacqua, in preparation; https://github.com/passaH20/pygeoflood
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We compute rating surfaces that provide the
inundation depth under a range of forcing combinations

POI 2 Rating Curve (WL=1.5 [m]) POI 2 Riverine—Coastal Rating Surface

5.0 5.0
3.25
a5 4.50 (m} 4.5
3.00 4 40 4,00 {m} s0E
E E I
T 2.75 - g 35 352
z 2 m
o 2.50 Y30 3.o§
= g S
8 o o
& 225 % 2.5 2.5 g
Qo g [+
s = S
Am ™
2200 § 2.0 207
o o [
() =
1.5 159
1.75 2
1.0 1.0
1.50
0 2000 4000 6000 8000 10000 0.5 0.5

2000 4000 6000 8000 10000

Watershed Max. River Discharge (Q) [cms] Watershed Max. River Discharge (Q) [cms]

A Rating Surface is a Rating Curve with an extra dimension

Wang, Passalacqua, Moftakhari, Hardage, in submission.




We built Rating Surfaces at points of interest identified by the
stakeholders and with HWMs and compared the results to SFINCS

© POI & HWM

Reach
Catchment
Flood Prone
Ares
Silsbee DEM
31 m

Silsbee POI2

© POI & HwM

Reach
Catchynent
D Flood Prone
Ares
Port Arthur DEM
7 m

-1 m

Port Arthur-HWM.3

1%

335 by

16 SFINCS model setup
T

470000 &00co AGDDOD

_ &
w0000 OO0 ADDODD
¥ |m] - NADE3 ) UTM zone 154

SF' NCSO Leijnse et al., 2021

Hydrodynamic model that captures fluvial,
pluvial, and coastal flooding



Definition of range of forcings

= Coastal: water levels from 0.1—2 m
(max observed: 1.1 m)

» Fluvial: max. discharges from 25—20k m3/s
(Harvey: 14k cms)

= Pluvial: precipitation rates from 0.01—0.3 m/hr

(Harvey: 0.17 m/hr)

Table 2: SFINCS compound scenario types and corresponding forcing ranges.

Scenario type

Coastal :[n ,\'_\\.[)H\]

Foremges

Fluvial* [m?s=1  Pluvial [mm]

Fluvial pluvial
Cloastal ]llll\'i.l'
I:lll\‘i:ul coastal

”l tO _2”
0.1 to 2.0

2.’| lll:()("“' ]“ to 300
basetlow 10 to 300
25 to 20000 0

* Represents maximum discharge within the watershed,

= 100 total coastal, fluvial, and pluvial scenarios are calculated

Coastal-pluvial scenario coverage

300 1

250 1

200 - .

150 1

Precipitation [mm]

0.'?5 0'50 0‘75 lbO 1,3‘5 1'50 1.:IS

8 Coastal WL [m NAVDSB]

2.00

Precipitation [mm]

SFINCS forcings (1000 scenarios)

Fluvial-pluvial scenario coverage

300 1

~N
o
(=)

150 1

-

(=]

o
4

'S R TS B 'y
HLH ML

2 R B
] b

.

« ¥ *a

b

0

2500 5000 7500 10000 1250015000 17500 20000
Maximum discharge [m* s ']

Halton sequence used to select 1000 scenarios for SFINCS simulations

Impacts

Coastal WL [m NAVDSS8)

2

Coastal-fluvial scenario coverage
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0 2500 5000 7500 1000012500 1500017500 20000
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Rating Surfaces are an efficient way to evaluate compound flooding

Rating Surface: Coastal-Pluvial Forcings at Port Arthur HWM 3 Rating Surface: Fluvial-Pluvial Forcings at Silsbee POI 1
Simplified Conceptual Models SFINCS Simplified Conceptual Models SFINCS
N T e "= R . Blfl: " R o [
2 3
E 200 200 % E 200 %
SR 2 © — <
5 | B 5 B
I < It 2
a 2 a -
& 3 @ 3
£ 100 100 8 £ 100 -
o o
< o
8 -] o .
10 S 10 - S 10 Cl s
0.1 05 10 15 20 0.1 0.5 1.0 1.5 20 25 5000 10000 15000 20000 25 5000 10000 15000 20000
Coastal WL [m NAVDS8] Coastal WL [m NAVDS8E8] Maximum discharge [m* s} Maximum discharge [m? s71]

The pygeoflood-based approach and SFINCS provide comparable ranges of flood inundation depth but SFINCS captures interactions between
the forcings not detectable with a simple superposition of flood inundation depth resulting from single forcings.

Wang, Passalacqua, Moftakhari, Hardage, in submission.




Interactions: Precipitation-discharge
patterns, heat-flooding events, and
future projections

Impacts: Compound flood inundation
mapping and downscaling of hydrological
predictions
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We developed and implemented a co-design process

= How do residents define and prioritize environmental
problems in their community?

= What processes can we use to integrate that
knowledge with scientific knowledge?

= How effective and equitable are the strategies that we
develop from that integrated process?

Collaborative work joined by researchers,
residents, and decision makers to link air,
hydrologic, & climate modeling & observations with
residents’ knowledge & preferences for developing
equitable adaptation strategies focused on flooding
& air quality.

Adaptation



Selected sites with task force members and developed ways to
visualize co-designed strategies

Activities with Technical Task Force &
Community Organization Task Force:

= Community engagement strategy that is sensitive
to community context

= Quarterly meeting with task force members

= Selected sites of interest with task force members
and gathered + integrated data + site visits

= Developed workflow to generate visualizations of
co-designed strategies

» Performed interviews and surveys

First sue
selected

Adaptation



Co-created strategies to address
flooding and air quality

Developing 6 scenarios of river floodplain restoration focused
on expansion of Big Thicket National Preserve, using:

» Data that The Conservation Fund, The Nature
Conservancy, Big Thicket National Heritage Trust, and the
National Parks Conservation Organization used to create a
priority expansion plan;

= Future impervious cover projections;

* Flood modeling

Modeling scenarios of expansion of Halbouty pump station.

Coastal wetland restoration
River floodplain restoration
Parks

Seawalls
Constructed stormwater wetlands

Meeting

Adaptation



Moving forward

ULRIL




Communication: visualization, data access, opportunities

River floodplain restoration/preservation

Comamimation Distnbut

2 Description of strategy: Preserving forested or natural areas adjacent to rnvers

3 Scale: Neighborhood to regional

2 Benefits: Habitat restoration, recreational opportunities, carbon sequestration, and flood risk reduction by absorbing excess
water. They also improve downstream water quality by filtering poliutants and sediments.

3 Challenges: High land acquisition costs, complex regulations, potential community resistance, and the need for
ongoing maintenance to control invasive spacies and sedimant buldup

2 Costsireturn on investment: Research by the National Institute of Building Sciences (NIBS) finds that for avery $1
spent on flood resilience, communities save $5 to 7 in disaster response and recovery

2 Local example: The River Road Ecosyslem Restaration Project in San Antonk (construction to beain 2027),

E I from Task F i
xample Strategy Card from Task Force meetings and survey CDC-TMVI Dashboard that integrates vulnerability indices into knowledge platform

Developed by G. Newman'’s group at Texas A&M.

Moving forward



Large volumes of data and modeling results pose challenges for data
storage and model integration

CKAN (Inter-team Data Sharing)

Example Theme 1 Data

[ © s bt |
Air Pollution Flooding 4 Population Study a
S l" ?-. KMP CKAN Site 22 datasets found Oreme by, Paevsccs
Cookbook TTG
E i -
Image Source Yosuke Kimura we) :T," = = ‘T.,"'M?m”tuf’?m«". ’,‘.A,‘n\”«"“,‘fh.m 7-.m=1mu-om'.f»o.nm
/
Any other vl
Nr:_sl:)::eDri: Spring 2026 Present Data to Taskforce
4 -
Rece ive Sostiesst Tesins Mochtiad Digital Ebranticn Madets
olygon ! P e i o et e et it
Ic)Iat‘;gset questions i
and feedback e ——————

J

Moving forward



We don’t know what future land cover will look like

. . Model Auxiliary
Historical data data
I— Climate . s . . -
output o= The model is conditioned on historical and auxiliary data
i ¥, , LuLC / .,“,j\l
: : — : Imperviousness ‘ Elevation
oo = ; u
Forecast |[h° ¢ \j) |
data | Decode ‘ﬁ ”}"«\
S Zoning
e B
il °
ol odes Infra-
- structure

Conditionals X N
. Imperviousness forecasting

Model seems to pick well the regions where change is most likely > Multi-
Ideal scale evaluation

“forecast”

Example of LULC forecasting approach: AL :_:)‘ 9-

» National Land Cover Database (NLCD):
30m/px, historical LULC & imperviousness maps
» Test Case: learn from [2013,2016,2019], predict 2021

— : . .
Dias et al., 2025 i . 1

Moving forward



We don’t know the geomorphic change resulting from
climatic and hydrological changes

N

We have instrumented the wetlands
with a flux tower, and we are running
numerical modeling simulations with
E3SM Land Model and collecting lidar
data and multispectral imagery.
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Risk results from the interactions across multiple systems
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= We quantified risk to people from flooding accounting for hydrological and socio-demographic information
= Based on the analysis, we informed the placement of hew sensors
= This risk mapping can be used to prioritize specific objectives in the expansion or design of sensor networks

Moving forward




Building community trust and integrating local knowledge are key

TEXAS A&M UNIVERSITY
yN17f Texas Target
. Communities

Moving forward



Christiaan Brunings devoted his life to being

“...raad en beschermer tegen de woede der zee en der stormen”

That challenge is still with us today, and we continue to improve our understanding and
our ability to anticipate, manage, and adapt to these events.







SETx-UIFL approach: top-down and bottom-up

High-res climate Sub-selected & bias- Hi-res bias-corrected ——
projections corrected for SETx climate projection data
Water & air Local hydrologic & air Current & future flooding
observations quality models & air pollution in SETx L, Co-designed adaptation

strategies

A

ID conditions where
Community input on performance criteria
Bottom-up flood & air quality are violated & Current & future
performance criteria likelihood under vulnerability mapping
¥ climate change for SETx

Motivation
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